12 research outputs found

    NexGen D-TCP: Next generation dynamic TCP congestion control algorithm

    Get PDF
    With the advancement of wireless access networks and mmWave New Radio (NR), new applications emerged, which requires a high data rate. The random packet loss due to mobility and channel conditions in a wireless network is not negligible, which degrades the significant performance of the Transmission Control Protocol (TCP). The TCP has been extensively deployed for congestion control in the communication network during the last two decades. Different variants are proposed to improve the performance of TCP in various scenarios, specifically in lossy and high bandwidth-delay product (high- BDP) networks. Implementing a new TCP congestion control algorithm whose performance is applicable over a broad range of network conditions is still a challenge. In this article, we introduce and analyze a Dynamic TCP (D-TCP) congestion control algorithm overmmWave NR and LTE-A networks. The proposed D-TCP algorithm copes up with the mmWave channel fluctuations by estimating the available channel bandwidth. The estimated bandwidth is used to derive the congestion control factor N. The congestion window is increased/decreased adaptively based on the calculated congestion control factor. We evaluated the performance of D-TCP in terms of congestion window growth, goodput, fairness and compared it with legacy and existing TCP algorithms. We performed simulations of mmWave NR during LOS \u3c-\u3e NLOS transitions and showed that D-TCP curtails the impact of under-utilization during mobility. The simulation results and live air experiment points out that D-TCP achieves 32:9% gain in goodput as compared to TCPReno and attains 118:9% gain in throughput as compared to TCP-Cubic

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    DRX over LAA-LTE-A New Design and Analysis Based on Semi-Markov Model

    No full text

    Directional Discontinuous Reception (DDRX) for mmWave Enabled 5G Communications

    No full text

    Future mobile technology: Channel access mechanism for LTE-LAA using deep learning

    Get PDF
    The exponential increase of future mobile phone users is resulting in growth of data traffic which is creating a shortage of the licensed spectrum. The scarcity led to the idea of using the unlicensed channel along with the licensed channel in Long Term Evolution (LTE), known as License Assisted Access (LAA). However, the unlicensed spectrum is already utilized by Wi-Fi and in order to deploy Small Base Stations (SBSs) that will also utilize the same band there is a need for a fair coexistence mechanism which will allow the SBS to be operational without degrading the performance of Wi-Fi. By adopting a deep learning approach, we can train SBSs to predict wireless traffic ahead of time. To forecast future time sequences, we use LSTM models which have already proven to be competent for time series predictions. We tested the LSTM models with high load datasets and a low load dataset that we were able to generate using a 2.4 GHz band. We obtained a RMSE of 0.041463 at the lowest for trace 3 and an MSE of 0.0017192. These results demonstrate the precision of LSTM networks for recognizing wireless traffic patterns. This concept incorporated in LTE-LAA infrastructures can result in better overall service and prove to be energy efficient than the traditional techniques such as LBT or CAA

    A CNN Based Automated Activity and Food Recognition Using Wearable Sensor for Preventive Healthcare

    No full text
    Recent developments in the field of preventive healthcare have received considerable attention due to the effective management of various chronic diseases including diabetes, heart stroke, obesity, and cancer. Various automated systems are being used for activity and food recognition in preventive healthcare. The automated systems lack sophisticated segmentation techniques and contain multiple sensors, which are inconvenient to be worn in real-life settings. To monitor activity and food together, our work presents a novel wearable system that employs the motion sensors in a smartwatch together with a piezoelectric sensor embedded in a necklace. The motion sensor generates distinct patterns for eight different physical activities including eating activity. The piezoelectric sensor generates different signal patterns for six different food types as the ingestion of each food is different from the others owing to their different characteristics: hardness, crunchiness, and tackiness. For effective representation of the signal patterns of the activities and foods, we employ dynamic segmentation. A novel algorithm called event similarity search (ESS) is developed to choose a segment with dynamic length, which represents signal patterns with different complexities equally well. Amplitude-based features and spectrogram-generated images from the segments of activity and food are fed to convolutional neural network (CNN)-based activity and food recognition networks, respectively. Extensive experimentation showed that the proposed system performs better than the state of the art methods for recognizing eight activity types and six food categories with an accuracy of 94.3% and 91.9% using support vector machine (SVM) and CNN, respectively

    Guiding Factors and Surface Modification Strategies for Biomaterials in Pharmaceutical Product Development

    No full text
    With the technological advent in the field of drug delivery and medicines, biomaterials become important owing to their properties such as biocompatibility, functionality, and bioactive and bioinert nature. However, the suitable designs of biomaterial closely rely on its specific application such as drug delivery, tissue engineering, or scaffold design. Understanding about the biomaterial and its role in successful pharmaceutical product development as well as its formulation strategies are important for the development of specific products. This chapter focuses on a different aspect of biomaterials in the successful development of therapeutic goods such as endosomal escape tendency, enhanced permeability and retention effect, stability, skin penetration, etc. Considering that surface modification of biomaterial may impart the desired properties for the use in biomedical applications, we also give special attention to and dictate almost all the available methods of biomaterial design and modification, such as sol-gel, electrophoretic deposition, calcium phosphate deposition, and plasma polymerization.Scopu

    Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates

    No full text
    Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS
    corecore